If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-628.3185t^-1/2+500=0
We add all the numbers together, and all the variables
t^2-628.3185t+500-1/2=0
We multiply all the terms by the denominator
t^2*2-(628.3185t)*2-1+500*2=0
We add all the numbers together, and all the variables
t^2*2-(+628.3185t)*2-1+500*2=0
We add all the numbers together, and all the variables
t^2*2-(+628.3185t)*2+999=0
We multiply parentheses
t^2*2-1256t+999=0
Wy multiply elements
2t^2-1256t+999=0
a = 2; b = -1256; c = +999;
Δ = b2-4ac
Δ = -12562-4·2·999
Δ = 1569544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1569544}=\sqrt{4*392386}=\sqrt{4}*\sqrt{392386}=2\sqrt{392386}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1256)-2\sqrt{392386}}{2*2}=\frac{1256-2\sqrt{392386}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1256)+2\sqrt{392386}}{2*2}=\frac{1256+2\sqrt{392386}}{4} $
| 5x+15=6x+20= | | 48=-31+15a | | -36=-7x+5(x-4) | | 7(x+4)+2=3(4x+5)+15 | | 6x+–3=0 | | 3x-1=-18 | | 2x-3(4x+8)=6 | | 7t=12t−15 | | 6(7−2x)+7=496(7−2x)+7=49 | | -3.4+v/7=-20.9 | | 90=x-43 | | 204-u=273 | | 15-2k=3k-1 | | 4(c−60)=76 | | 1/5x+4=21/3 | | x*12x=8*8 | | x18=108 | | -4(1+6b)=-23 | | 3y-24=2y-1 | | 15t+10=-12 | | 24x+11=35 | | 27=3(5r-6) | | 3x-6=8x-54 | | X=-5+1/2x | | 3(n+10)=5(10+2/5n) | | 1/2(x-2)=3/1(x+5) | | 2u=32u= | | z2+ 15=18 | | 1+5n-4=9n+5 | | X=-5+0.5x | | -6x-10=-12x-4 | | 3p−12=6 |